Disordered water within a hydrophobic protein cavity visualized by x-ray crystallography.

نویسندگان

  • B Yu
  • M Blaber
  • A M Gronenborn
  • G M Clore
  • D L Caspar
چکیده

Water in the hydrophobic cavity of human interleukin 1beta, which was detected by NMR spectroscopy but was invisible by high resolution x-ray crystallography, has been mapped quantitatively by measurement and phasing of all of the low resolution x-ray diffraction data from a single crystal. Phases for the low resolution data were refined by iterative density modification of an initial flat solvent model outside the envelope of the atomic model. The refinement was restrained by the condition that the map of the difference between the electron density distribution in the full unit cell and that of the atomic model be flat within the envelope of the well ordered protein structure. Care was taken to avoid overfitting the diffraction data by maintaining phases for the high resolution data from the atomic model and by a resolution-dependent damping of the structure factor differences between data and model. The cavity region in the protein could accommodate up to four water molecules. The refined solvent difference map indicates that there are about two water molecules in the cavity region. This map is compatible with an atomic model of the water distribution refined by using XPLOR. About 70% of the time, there appears to be a water dimer in the central hydrophobic cavity, which is connected to the outside by two constricted channels occupied by single water molecules approximately 40% of the time on one side and approximately 10% on the other.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and energetic consequences of mutations in a solvated hydrophobic cavity.

The structural and energetic consequences of modifications to the hydrophobic cavity of interleukin 1-beta (IL-1beta) are described. Previous reports demonstrated that the entirely hydrophobic cavity of IL-1beta contains positionally disordered water. To gain a better understanding of the nature of this cavity and the water therein, a number of mutant proteins were constructed by site-directed ...

متن کامل

Coupling of protein relaxation to ligand binding and migration in myoglobin.

Protein relaxation, ligand binding, and ligand migration into a hydrophobic cavity in myoglobin are unified by a bounded diffusion model which produces an accurate fit to complex ligand rebinding data over eight decades in time and a 160 K temperature range, in qualitative agreement with time-resolved x-ray crystallography. Protein relaxation operates in a cyclic manner to move the ligand away ...

متن کامل

Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation.

Formation of a water-expelling nonpolar core is the paradigm of protein folding and stability. Although experiment largely confirms this picture, water buried in "hydrophobic" cavities is required for the function of some proteins. Hydration of the protein core has also been suggested as the mechanism of pressure-induced unfolding. We therefore are led to ask whether even the most nonpolar prot...

متن کامل

Structural basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography.

Non-specific lipid-transfer proteins (nsLTPs) are involved in the movement of phospholipids, glycolipids, fatty acids, and steroids between membranes. Several structures of plant nsLTPs have been determined both by X-ray crystallography and nuclear magnetic resonance. However, the detailed structural basis of the non-specific binding of hydrophobic ligands by nsLTPs is still poorly understood. ...

متن کامل

Artificial protein cavities as specific ligand-binding templates: characterization of an engineered heterocyclic cation-binding site that preserves the evolved specificity of the parent protein.

Cavity complementation has been observed in many proteins, where an appropriate small molecule binds to a cavity-forming mutant. Here, the binding of compounds to the W191G cavity mutant of cytochrome c peroxidase is characterized by X-ray crystallography and binding thermodynamics. Unlike cavities created by removal of hydrophobic side-chains, the W191G cavity does not bind neutral or hydropho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 1  شماره 

صفحات  -

تاریخ انتشار 1999